Comparative Performance of State-of-the-Art Classifiers in Computer-Aided Detection for CT Colonography

نویسندگان

  • Sang Ho Lee
  • Janne Näppi
  • Hiroyuki Yoshida
چکیده

Several effective machine learning and pattern recognition schemes have been developed for medical imaging. Although many classifiers have been used with computer-aided detection (CAD) for computed tomographic colonography (CTC), little is known about their relative performance. This pilot study compares the performance of several state-of-the-art classifiers and feature selection methods in the classification of lesion candidates detected by CAD in CTC. There were four classifiers: linear discriminant analysis (LDA), radial basis function support vector machine (RBF-SVM), random forests (RF), and gradient boosting machine (GBM). There were five feature selection methods: sequential forward inclusion (SFI) of principal components (PCs), univariate filtering (UF), UF of PCs, recursive feature elimination (RFE), and RFE of PCs. A strategy of using all available features was tested also. For evaluation, 232,211 detections by a CAD system on 1,211 patients were subsampled randomly to create 10 different populations of 500 true-positive (TP) and 500 false-positive (FP) detections. The classifier performance was evaluated by use of the area under the receiver operating characteristic curve of 3 repeated 10-fold cross-validations. According to the result, the discrimination performance of the RBF-SVM classifier with feature selection by the RFE of PCs compared favorably with other methods, although no single classifier outperformed other classifiers under all conditions and feature selection schemes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets

Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...

متن کامل

Online multiple people tracking-by-detection in crowded scenes

Multiple people detection and tracking is a challenging task in real-world crowded scenes. In this paper, we have presented an online multiple people tracking-by-detection approach with a single camera. We have detected objects with deformable part models and a visual background extractor. In the tracking phase we have used a combination of support vector machine (SVM) person-specific classifie...

متن کامل

A New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients

Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...

متن کامل

A Note on Feature Selection for Polyp Detection in CT Colonography

In this paper we describe a computer aided detection (CAD) algorithm for robust detection of polyps in computed tomography (CT) colonography. The devised algorithm identifies suspicious polyp candidate surfaces using the surface normal intersection, Hough transform, 3D histogram analysis, region growing and a convexity test. From these detected surfaces we extract statistical and morphological ...

متن کامل

Recent advances in automated lesion detection for CT colonography by second order curvature flow

Over the past few years, techniques for CT colonography evolved rapidly, stimulated by encouraging performance data. Computer aided detection (CAD) methods were developed that enhance the efficiency of reading the data. Our objective in this paper is to review some recent advances on this topic, by others as well by ourselves.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012